

9

which the VCG generated the given VC or contributed a
safety obligation). Figure 4 shows how the tracing
information can be used to support the certification process.
A click on the source link associated with each VC prompts
the certification assistant to highlight in yellow all affected
lines of code, and display the annotations for the selected
VC in the RTW-generated code (center frame). Conversely,
a click on the line number link at each line of code or on an
annotation link will display all VCs associated with that line
or annotation in the VC Navigation frame. In the VC
Navigation frame, a further click on the verification
condition link itself displays the formula which can then be
interpreted in the context of the relevant program fragments.
This helps domain experts assess whether the safety policy
is actually violated, which parts of the program are affected,
and eventually how any violation can be resolved. This
traceability is also mandated by relevant standards such as
DO-178B [9], and supports safety checks, which are often
carried out during code reviews where reviewers look in
detail at each line of the code and check the individual
safety properties statement by statement. Since linking
works in both directions, in combination with RTW’s
bidirectional model-to-code tracing capability, the code-to-
VC tracing provides users with the ability to navigate
between VCs and model elements.

Browsing and Navigation—When the certification HTML
files are created, the user can choose which verification
artifacts (i.e., certification stages) to view. The stage files
are listed in the Stage Navigation frame (lower left hand
frame in Figure 4). When the user clicks a link in that
frame, the browser window displays the appropriate HTML
files. This allows the user to create and view annotations,
VCs, or certificates for different safety policies for the same
autogenerated RTW code without leaving the Matlab
Browser window.

Implementation

We now consider the case of tracing code to VCs in some
detail, as it is the one that requires the most additional

functionality. There are two aspects to consider for
implementing the interface: first, the representation format
and language for implementing the tracing and controls
(implemented as a backend to the inference engine); second,
the mechanism by which tracing information can be
incorporated into RTW-generated code.

AutoCert Backend—There are two alternatives for
representing the tracing information and we discuss these
now. One option is to use PHP (an earlier prototype [5] used
this). However, this would offer little possibility of
integration into the Model Explorer component of RTW.
This is because, unlike JavaScript, PHP must be executed
on a web server. This in turn would require the user to
switch between two different locations: the browser for the
VC traceability and the Model Explorer for the rest of the
functionality provided by RTW. It would also require access
to a PHP enabled web server. Instead, we chose a
JavaScript-based approach.

A JavaScript based implementation allows us to integrate
our functionality into Matlab in the most seamless manner.
This is because JavaScript files are just HTML files with
additional functions (defined in JavaScript) that are
interpreted by the Matlab Browser. That is, they do not
require an external web server. Since the Matlab Browser
resides in the Matlab environment, it is possible to invoke
Matlab command line calls from within the HTML files,
giving access to AutoCert functionality.

The backend needs to support the following commands:

• Make a system command line call from within an
HTML file (JavaScript and Matlab command). This
allows the AutoCert interface to:

o Call the AutoCert inference engine
o Call ATP systems to provide certificates
o Call ATP systems to check certificates

• Highlight/unhighlight HTML code

• Show/hide annotations

Each of these commands can be implemented either directly
in JavaScript or via system calls from Matlab.

Integration with RTW—There are a number of options for
providing links from the code to the VCs. The simplest
would be to generate parallel files that are similar in
structure to the HTML but contain links to the VCs instead
of links back to the model. However, this is not desirable
from a usability standpoint as it would require the user to
co-ordinate between two corresponding and very similar
files. A second approach would be to modify the HTML
documentation templates used by RTW (similar to the way
in which the code generation templates can be customized)

Figure 5 – Structure of Results Page

10

in order to insert our own links (e.g., to the VCs) in addition
to the ones to the model generated by RTW. However, even
supposing this was possible, it would be contrary to the
spirit of a plug-in that does not have access to generator
internals and would therefore violate the principle of
independent certification. Instead, we chose a third
approach, which is to post-process the generated HTML
files to insert additional links and interweave additional
information, such as annotations. The new links at each line
of code and each newly added annotation give traceability
from code to VCs and vice-versa.

For the weaver program, we implemented a parser specific
to RTW HTML output. Because the RTW HTML file is
well-formed, we are able to break the file into three parts:
the header, the body, and the footer (Figure 5). The header
ends and the body begins at the HTML tag of <PRE>, and
consequently the body ends and the footer begins at the
HTML tag of </PRE>. A well-formed document conforms to
all XML syntax rules. The main rule to understand is that
every element with an opening tag is followed by a closing
tag. Within the body, each source line in the HTML page
represents an actual line of RTW code from the
corresponding .c file. Once parsed, each of these source
lines are wrapped with an HTML SPAN tag and given a
unique HTML ID (the ID being the source line number).

The tool extracts a list of inferred annotations from the auto-
generated code, and inserts them into the correct locations in
the RTW-generated HTML extended with annotations and
line numbers. The annotations are also wrapped with a
SPAN tag and given a unique HTML ID (the ID being the
unique annotation name). We use JavaScript to
highlight/unhighlight code and show/hide annotations
corresponding to the selected VC. Further integration could
be achieved if the files generated by AutoCert could be
viewed in the Model Explorer as well as the browser, which
would require modifying either the Matlab generated
contents file or the template that generates it.

Summary

We have described the integration of certification
functionality (AutoCert) with the Matlab/RTW GUI in a
way that preserves the user experience and is as seamless as
possible. Existing RTW navigation is HTML based, so we
have chosen to continue with that in order to preserve the
user experience. A Matlab-based GUI approach was
considered but rejected because it would not have been
consistent with the HTML based approach used by Matlab.

4. CONCLUSIONS

The AutoCert system described here is a push-button
technology for the verification of auto-generated code. The
use of a tightly-coupled generation/analysis tool can allow
system engineers to concentrate on the modeling and design,

rather than worrying about low-level software details. By
providing tracing between code and verification artifacts,
and customizable safety reports, it supports both
certification and debugging. We see AutoCert as a step
towards providing an integrated “executive dashboard” for
V&V.

Although integrated with the code generator, AutoCert is
functionally independent in the sense that it does not rely on
the correctness of any generator components.

The AutoCert technology has a number of advantages over
other approaches. In particular, it can handle code with
arbitrary loops, and can handle code generated from both
continuous and discrete models expressed in Simulink as
well as Embedded Matlab.

The tool has two main benefits: it helps catch bugs in
autocoders, and it helps with the certification process for the
auto-generated code, thus mitigating the risk of using COTS
autocoders that lack a trusted heritage.

Our approach offers a general framework for augmenting
code generators with a certification component, and we have
described an adaptation to MathWorks’ Real-Time
Workshop [8]. We have also developed a set of schemas
adapted to a subset of the Simulink aerospace blockset [7].
Previous work concentrated on in-house code generators [4,
5].

The certification system based on annotation inference as
described here is more flexible and extensible than
decentralized architectures [2] where certification
information is distributed throughout the code generator.
Identifying patterns is an iterative process, but by allowing
tracing between VCs and statements of the auto-generated
code, the tool lets missing annotations and, thus, missing
patterns, be pinpointed more easily.

By raising the level of abstraction at which verification
knowledge is expressed, we are able to concisely capture
many variations of the underlying code idioms. In
particular, we can easily deal with optimizations which
obscure low-level code structure. Indeed, there are other
forms of guidance which are naturally expressed in a
similarly declarative fashion, and we view annotation
schemas as a first step towards a fully programmable
certification language.

Finally, we are investigating other ways in which the
analysis can provide insight into generated code. The safety
report can form the basis of a safety case, that is, a top-down
argument for why the software meets its high-level
requirements3. Another possibility is that by computing the
weakest precondition of (the code generated by) a

3 More precisely, a safety case is a structured argument that presents
evidence for why a system remains safe in the presence of its known
hazards. The first step, therefore, is a full hazard analysis

11

block/submodel, the tool can automatically determine its
interface requirements. The user could also request that a
specific submodel be certified (i.e., the code corresponding
to that submodel).

REFERENCES

[1] Ewen Denney and Bernd Fischer. Correctness of source-
level safety policies. In Keijiro Araki, Stefania Gnesi, and
Dino Mandrioli, editors, Proc. FM 2003: Formal Methods},
volume 2805 of LNCS, pages 894-913, Pisa, Italy,
September 2003. Springer.

[2] Ewen Denney and Bernd Fischer. Certifiable program
generation. In Proceedings of the Conference on Generative
Programming and Component Engineering (GPCE '05),
volume 3676 of LNCS, pages 17-28, Tallinn, Estonia,
September-October 2005. Springer.

[3] Ewen Denney, Bernd Fischer, and Johann Schumann.
An empirical evaluation of automated theorem provers in
software certification. International Journal of AI Tools},
15(1):81-107, February 2006.

[4] Ewen Denney and Bernd Fischer. Annotation inference
for the safety certification of automatically generated code.
In Proceedings of the 21st IEEE International Conference
on Automated Software Engineering (ASE ’06), pages 265–
268, Tokyo, Japan, September 2006. IEEE.

[5] Ewen Denney and Bernd Fischer. A generic annotation
inference algorithm for the safety certification of
automatically generated code. In Proceedings of the
Conference on Generative Programming and Component
Engineering (GPCE ’06), Portland, Oregon, October 2006.
ACM Press.

[6] Tom Erkkinen. Production code generation for safety-
critical systems. Technical report, MathWorks, 2004.

[7] MathWorks Aerospace Blockset.
http://www.mathworks.com/products/aeroblks/.

[8] MathWorks Real-Time Workshop.
http://www.mathworks.com/products/rtw.

[9] RTCA Special Committee 167. Software considerations
in airborne systems and equipment certification. Technical
report, RTCA, Inc., December 1992.

[10] Ingo Stürmer and Mirko Conrad. Test suite design for
code generation tools. In Proceedings of 18th IEEE
International Conference on Automated Software
Engineering}, pages 286-290. IEEE, October 2003.

[11] Ingo Stürmer, Daniela Weinberg, and Mirko Conrad.
Overview of existing safeguarding techniques for

automatically generated code. SIGSOFT Software
Engineering Notes}, 30(4):1-6, July 2005.

[12] Geoff Sutcliffe and Christian Suttner. TPTP home
page. http://www.tptp.org.

BIOGRAPHY

 Dr Ewen Denney (PhD University
of Edinburgh, 1999) has published over 40 papers in the
areas of automated code generation, software modeling,
software certification, and the foundations of computer
science. He has been at NASA Ames for five years, where
he has mainly worked on techniques for reliable automated
code generation.

 Steven Trac (University of Miami,
2008) is a research assistant in the Department of
Computer Science at University of Miami, FL. His main
research interest is in Computational Geometry. He is also
a member of the Automated Reasoning Tools (ARTist)
research group.

